@ Virgil’liaTECh GPU Memory

Invent the Future

GPU Memory

— Memory issue for CUDA programming

Copyright © 2009 by Yong Cao, Referencing UIUC ECE498AL Course Notes



@ Virgil’liaTECh GPU Memory

Invent the Future

CUDA Variable Type Qualifiers

Variable declaration Memory Scope Lifetime
__device__ _ local__ int LocalVar; local thread thread
__device _ shared int Sharedvar; shared block block
__device__ _ constant__ int constant grid application
ConstantVar;
> device is optional when used with local |,

__Shared ,or constant

» Automatic variables without any qualifier reside in a
register
» Except arrays that reside in local memory

Copyright © 2009 by Yong Cao, Referencing UIUC ECE498AL Course Notes



W VirginiaTech

Invent the Future

GPU Memory

Where to declare variables?

~

Can host access It?

~

_/  register (automatic)

\_

global yes no shared

constant | Ilocal
a N O

Outside of
. In the kernel

any Function

NS RN

\

Copyright © 2009 by Yong Cao, Referencing UIUC ECE498AL Course Notes



@ Virgil’liaTECh GPU Memory

Invent the Future

Variable Type Restrictions

» Pointers can only point to memory allocated
or declared in global memory:
> Allocated in the host and passed to the kernel:
__global  void KernelFunc(float*
ptr)
» Obtained as the address of a global variable:
float* ptr = &GlobalVar;

Copyright © 2009 by Yong Cao, Referencing UIUC ECE498AL Course Notes



@ Virgil’liaTECh GPU Memory

Invent the Future

A Common Programming Strategy

» Global memory is much slower than shared memory

> $So, a profitable way of performing computation on the
device is to tile data to take advantage of fast shared
memory:
» Partition data into subsets that fit into shared memory

» Handle each data subset with one thread block by:

» Loading the subset from global memory to shared memory, using
multiple threads to exploit memory-level parallelism

» Performing the computation on the subset from shared memory; each
thread can efficiently multi-pass over any data element

» Copying results from shared memory to global memory

Copyright © 2009 by Yong Cao, Referencing UIUC ECE498AL Course Notes



@ Virgil’liaTECh GPU Memory

Invent the Future

A Common Programming Strategy (Cont.)

» Constant memory also resides in device memory - much
slower access than shared memory
> But... cached!
» Highly efficient access for read-only data

» Carefully divide data according to access patterns
> R/0Only 2 constant memory (very fast if in cache)

R/W shared within Block - shared memory (very fast)

R/W within each thread - registers (very fast)

R/W inputs/results - global memory (very slow)

YV V V

For texture memory usage, see NVIDIA document.

Copyright © 2009 by Yong Cao, Referencing UIUC ECE498AL Course Notes



@ Vil’g]'niaTECh GPU Memory

Invent the Future

GPU Atomic Integer Operations

> Atomic operations on integers in global
memory:
» Associative operations on sighed/unsigned ints
» add, sub, min, max, ...
» and, or, xor
» Increment, decrement
» Exchange, compare and swap

> Requires hardware with compute capability
1.1 and above.

Copyright © 2009 by Yong Cao, Referencing UIUC ECE498AL Course Notes



@ Virgil’liaTECh GPU Memory

Invent the Future

Shared Memory

» Matrix Multiplication as example again.

Copyright © 2009 by Yong Cao, Referencing UIUC ECE498AL Course Notes



@ Virgil’liaTECh GPU Memory

Invent the Future

Review: Matrix Multiplication Kernel using Multiple Blocks

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{

// Calculate the row iIndex of the Pd element and M

int Row = blockldx.y*TILE WIDTH + threadldx.y;
// Calculate the column idenx of Pd and N

int Col = blockldx.x*TILE WIDTH + threadldx.x;

float Pvalue = 0O;
// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)
Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;
}

Copyright © 2009 by Yong Cao, Referencing UIUC ECE498AL Course Notes



(T
572

Virginia

Invent the Future

TECh GPU Memory

How about performance on G80?

> All threads access global memory

for the
>

>
>

>

> Need to drastically cut down
memory accesses to get closer to
the peak 346.5 GFLOPS

ir input matrix elements

Two memory accesses (8 bytes)
per floating point multiply-add

4B/s of memory
bandwidth/FLOPS

4*346.5 = 1386 GB/s required
to achieve peak FLOP rating

86.4 GB/s limits the code at
21.6 GFLOPS

Grid

Block (0, 0)

|

Block (1, 0)

|

Thxead (0, 0) | Thread (1, 0)

Thread (0, 0) || Thread (1, 0)

\ 1 4

4 4

Host

+“—>

"

Copyright © 2009 by Yong Cao, Referencing UIUC ECE498AL Course Notes




@ Virgil’liaTECh GPU Memory

Invent the Future

Idea: Use Shared Memory to reuse global memory data

» Each input element is read
by WIDTH threads.

» Load each element into
Shared Memory and have
several threads use the
local version to reduce the
memory bandwidth

» Tiled algorithms

tx

& »
<% >

Copyright © 2009 by Yong Cao, Referencing UIUC ECE498AL Course Notes




M VirginiaTech

Invent the Future

Tiled Multiply

GPU Memory

TILE_WIDT ; >

> Break up the execution of the kernel
into phases so that the data accesses
in each phase is focused on one
subset (tile) of Md and Nd

a
< >

tx
012 TILE_WIDTH-1

|
||

|

d »
« >«

Copyright © 2009 by Yong Cao, Referencing UIUC ECE498AL Course Notes

12

\ 4



@ Vil’g]'niaTECh GPU Memory

Invent the Future

Example

dy Md; Md, Md; Pd Pd. (sl alepW

Copyright © 2009 by Yong Cao, Referencing UIUC ECE498AL Course Notes



@ Virgil’liaTECh GPU Memory

Invent the Future

Example (Cont’)

» Every Md and Nd Element is used exactly twice in
generating a 2X2 tile of P

P0,0 P1,0 P0,1 P1,1
thread, , thread, , thread, thread, ,
IVIO,O : N0,0 IVIO,O : IV|0,1 : NO,O IVIO,1 @

Access N ‘*N M. * N M. * N
order @ 0,1 @ 1,1 1,1 No,1 1,1 N1

MZ,O : NO,2 MZ,O : N1,2 M2,1 : N0,2 M2,1 * N1,2

M3,0 : NO,3 IVI3,O : N1,3 M3,1 : N0,3 M3,1 * N1,3

Copyright © 2009 by Yong Cao, Referencing UIUC ECE498AL Course Notes



@ Vil’g]'niaTECh GPU Memory

Invent the Future

Breaking Md and Nd into Tiles

Vd, Md,; vid, Md; . , | ds

’ Pd3’c

Fds 4

,4

Pd3’3

Copyright © 2009 by Yong Cao, Referencing UIUC ECE498AL Course Notes



@ Virgil’liaTECh GPU Memory

Invent the Future

Example (2)

» Each phase of a Thread Block uses one tile from Md
and one from Nd

Step 4 Step 5 Step 6
Too Md, Nd, o PVaIue*O,o += Md,, Nd, , PVaIue*O’O +=
l ! Mds, o Nds, , + ! l Mdso,O*NdsO'0 +
Mds, , Ndso,o( 1,0 Ndsg 4 Mds, Nds, Mds, ,"Nds, ;
Tio | Mdg, Nd,, N PValue,, += Md Nd, , PValue, o +=
l ! 0 dso+ l l MdSO,O*Nds1’O+
Mds1’0< NdS1,O S1,0 NdS1,1 Mds1’o NdS.]’O Md31,0 NdS1’1
Tos | Mdg, , PdVa\%m 4= Md, ; Nd, 5 PdValue, , +=
l ! Mds, ;"Ndsg o + ! l Mds, *Nds; o +
Mdsor | Ndsy, N\ 2®r %0 Mdsp; | Ndsy, | Mdsii™Ndso;
T, | Mdg, Nd, ; PWA 4= Md Nd, 5 PdValue, , +=
l l Mdson* dso+ ! l Mdso,1:Nds1’0+
Mds, Nds, , Mds, 1*Nds; , Mds, , Nds, | Mds, ;*Nds, ,
time >

Copyright © 2009 by Yong Cao, Referencing UIUC ECE498AL Course Notes



@ Virgil’liaTECh GPU Memory

Invent the Future

First-order Size Considerations in G80

» Each thread block should have many threads
» TILE_WIDTH of 16 gives 16*16 = 256 threads

» There should be many thread blocks
> A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks

» Each thread block perform 2*256 = 512 float loads from
global memory for 256 * (2*16) = 8,192 mul/add
operations.

» Memory bandwidth no longer a limiting factor

17

Copyright © 2009 by Yong Cao, Referencing UIUC ECE498AL Course Notes



@ Vil’g]'niaTECh GPU Memory

Invent the Future

CUDA Code - Kernel Execution Configuration

// Setup the execution configuration

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);
dim3 dimGrid(Width ~/ TILE WIDTH,
Width /7 TILE_WIDTH);

18

Copyright © 2009 by Yong Cao, Referencing UIUC ECE498AL Course Notes



@ Vil’g]'niaTECh GPU Memory

Invent the Future

Tiled Matrix Multiplication Kernel

__global___void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{

1. _ shared__float MdAsS[TILE_WIDTH][TILE_WIDTH];
2. _ shared__float NAS[TILE_WIDTH][TILE_WIDTH];
3. Int bx blockldx.x; 1nt by blockldx.y;

4. iInt tx threadldx.x; iInt ty threadldx.y;
// ldentify the row and column of the Pd element to work on
5. 1Int Row = by * TILE_WIDTH + ty;

6. 1nt Col = bx * TILE_WIDTH + tx;

7. float Pvalue = O;

// Loop over the Md and Nd tiles required to compute the Pd element
8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Coolaborative loading of Md and Nd tiles into shared memory

9. Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
10. Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width];
11. __syncthreads();

11. for (int k = 0; k < TILE_WIDTH; ++k)

12. Pvalue += Mds[ty][k] * Nds[k][tx];

13. Synchthreads();

14. %}

13. Pd[Row*Width+Col] = Pvalue;
}

Copyright © 2009 by Yong Cao, Referencing UIUC ECE498AL Course Notes



@ Vil’g]'niaTECh GPU Memory

Invent the Future

Tiled MUItipIy m 2 TII E \/\/IDTH 1
» Each computes one
square sub-matrix Pd_, of size m
TILE_WIDTH by
» Each thread computes one I

element of Pd_,

by

TILE WDTj |

£ e

d

v

» .
« Ll 3

Copyright © 2009 by Yong Cao, Referencing UIUC ECE498AL Course Notes



@ Virgil’liaTECh GPU Memory

Invent the Future

G80 Shared Memory and Threading

» Each SM in G80 has 16KB shared memory
» SM size is implementation dependent!

> For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared
memory.
» Can potentially have up to 8 Thread Blocks actively executing

» This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per
block)

» The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB shared
memory usage per thread block, allowing only up to two thread blocks
active at the same time

» Using 16x16 tiling, we reduce the accesses to the global memory by
a factor of 16

> The 86.4B/s bandwidth can now support (86.4/4)*16 = 347.6 GFLOPS!

21

Copyright © 2009 by Yong Cao, Referencing UIUC ECE498AL Course Notes



@ Vi@l’li&TECh GPU Memory

Invent the Future

Tiling Size Effects

GFLOPS

0+

58 <3 32 =8 3% =3 3 23
=6 3z =% 3@ =5 §z =5 3%
not tiled 4x4 tiles 8x8 tiles 12x12 tiles 16x16 tiles

Copyright © 2009 by Yong Cao, Referencing UIUC ECE498AL Course Notes




@ Virgil’liaTECh GPU Memory

Invent the Future

Summary- Typical Structure of a CUDA Program

» Global variables declaration

> _host

» _ device__...__global__, _constant_, _ texture__
» Function prototypes

» __global__ void kernelOne(...)

» float handyFunction(...)
» Main ()

» allocate memory space on the device — cudaMalloc(&d_GlIblVarPtr, bytes )
» transfer data from host to device — cudaMemCpy(d_GlIblVarPtr, h_Gl...)
» execution configuration setup
> kernel call — kernelOne<<<execution configuration>>>( args... ); repeat
» transfer results from device to host — cudaMemCpy(h_GlblVarPtr,...) as
» optional: compare against golden (host computed) solution
» Kernel — void kernelOne(type args,...) needed
» variables declaration - __local__, _shared__
» automatic variables transparently assigned to registers or local memory
» syncthreads()...
» Other functions
» float handyFunction(int inVar...);
23

Copyright © 2009 by Yong Cao, Referencing UIUC ECE498AL Course Notes



