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Multicore Architectures 
Week 1, Lecture 2 
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Multicore Landscape 

•  Intel 
–  Dual and quad-core Pentium family.   
–  80-core demonstration last year.  

•  AMD 
–  Dual, triple (?!), and quad-core Opteron family.  

•  IBM 
–  Dual and quad-core Power family 
–  Cell Broadband Engine 

•  Sun 
–  (Multithreaded) Niagara: 8 cores (64 threads). 
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Multicore Classes 

•  Homogenous Multicore 
–  Replication of the same processor type on the die as a 

shared memory multiprocessor.  
–  Examples:  AMD and Intel dual- and quad-core processors 

•  Heterogeneous/Hybrid Multicore  
–  Different processor types on a die 
–  Example:  IBM Cell Broadband Engine 

•  One standard core (PowerPC) + 8 specialiced cores (SPEs) 
–  Rumors:  Intel and AMD to follow suit.   

•  Combining GPU-like processors with standard multicore cores 
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Homogeneous Multicore 

•  The major mainstream chips are all of this form  
–  Examples:  Intel, IBM, Sun, AMD, and so on.  

•  Take a single “core”, stamp it out lots of times on a die. 

•  This will work for now, but it likely will not scale to high 
core counts.  Why? 
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AMD Dual-, Triple-, and Quad-Core 
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AMD Triple-Core? 

•  Actually quad-core processors with one core disabled.   

•  Manufacturing defects that kill one core but leave the 
rest functional would be thrown out as failed quad core.  
–  Why not resell them as triple core?  

•  Not a new idea … 
–  Lower clock-rate versions of processors are identical to their 

higher clock-rate siblings but were part of a batch that failed to 
meet certain manufacturing tolerances but were otherwise fine. 
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AMD Rev. H Quad-Core 
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IBM: Power6 
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Sun Niagara 

  8 cores, 8 threads 
per core = 64 
threads 
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Intel Nehalem 
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Dies 

•  Observations 
–  Core replication obvious.  
–  Big chunks of real estate dedicated to caches. 
–  Increasing real estate dedicated to memory and bus logic.  

Why?  
–  In the past, SMPs were usually 2 or 4 CPUs, so this logic 

was on other chips on the motherboard.  Even with big fat 
SMPs, the logic was off on a different board (often this was 
what the $$$ went for in the expensive SMPs.) 
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Wait a Minute!  There’s More! 
•  Itanium processors are 

based on the concept of  
VLIW (Very Long 
Instruction Word).   
–  Each instruction is a 128-

bit word composed of four 
32-bit instructions to be 
executed concurrently. 

–  Difficulty of identifying 
parallelism is left to the 
compiler instead of 
hardware or programmer. 

–  VLIW dead with “Itanic”?   
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VLIW Lives! 

•  VLIW not dead.   
•  Intel Terascale demo 

processor  
–  80 VLIW cores instead 

of 80 superscalar cores 
similar to those found in 
the Core2 architecture 
more commonly found 
today.  
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Multicore:  Present 

•  Core count is increasing.   
•  Operating systems schedule processes out to the 

various cores in the same way they always have on 
traditional multiprocessor systems.   

•  Applications get increased performance for free by 
reducing the # processes per core yielding a 
decrease in contention for processor resources. 
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Resource Contention 

•  Assume each process or thread has its own CPU. 
–  Example:  The little clock in the corner of the screen has its 

own CPU.  

•  Result:  Massive contention for resources when 
simultaneous threads all “fight” for off-chip resources. 

•  Process preemption when doing something slow, 
e.g., going to memory.  Other useful work can occur.  

•  If a processor exists for each process, everyone 
could proceed at the same time yet will still be 
fighting for a bus that is not growing at the same rate 
as the core count.  Same with caches. 
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Blast Back to the Past … 70s and 80s 

•  Network topology will matter 
again!   
–  Mesh-based algorithms, hypercubes, 

tori, etc.  
–  80-core Intel Terascale demo 

processor had a huge component 
related to interconnection topology.  

–  Systolic algorithms are making a 
comeback!  
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Reminder:  Reading Assignment 

•  Brian Hayes, “Computing in a Parallel Universe,” 
American Scientist, November-December 2007. 
http://www.americanscientist.org/issues/pub/
computing-in-a-parallel-universe  

•  Herb Sutter, “The Free Lunch Is Over: A 
Fundamental Turn Toward Concurrency in Software,” 
Dr. Dobb's Journal, 30(3), March 2005.        
http://gotw.ca/publications/concurrency-ddj.htm  
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Why Memory Matters 

Yes for “traditional multicore” … 
No for “emerging multicore” … 
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Memory Architecture in Multicore 

•  As you saw in one of the readings …  
–  The cache is still a key performance feature.  

•  … but interesting ideas exist that will turn the usual memory 
architecture upside down. 

•  … hence, we look at traditional memory architecture so we can 
compare and contrast it with emerging memory architecture of 
the Cell, GPGPU, and so on. 
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Caches: The Multicore Feature of Interest  

•  Introduced in the 1960s as a way to overcome the 
“memory wall”.  
–  Memory speeds did not advance as fast as the speed of 

functional units.   
–  Consequence:  Processor outruns memory, leading to 

decreased utilization.  
•  Utilization = (ttotal – tidle) / ttotal 

•  What happens when you go out to main memory?  
Idle time.  
–  Decreased utilization = less work per unit time.  
–  This costs money because time=$$ … so time doing nothing 

is $$$ wasted. 
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Idle Time 

•  Caches were not the sole fix for idle time. 
–  Preemptive multitasking and time sharing were actually the 

dominant methods in the early days. 
–  But every program inevitably has to go out to memory, and 

you do not always have enough jobs to swap in while others 
wait for memory.  

–  Plus, do you really want to be preempted every time you ask 
for data?  Of course not!  

•  So, caches important (for now :-) … 
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Caches:  Quick Overview 

•  Traditional Single-Level Memory 

•  Multiple Memory Levels 
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Caches:  In Action 

•  Access a location in memory  
•  Copy the location and its neighbors into the faster 

memories closer to the CPU. 
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Caches:  In Action 

•  Next time you access memory, if you already pulled 
the address into one of the cache levels in a previous 
access, the value is provided from the cache. 



Multicore Landscape 

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile. 

Caches:  In Action 

•  Next time you access memory, if you already pulled 
the address into one of the cache levels in a previous 
access, the value is provided from the cache. 



Multicore Landscape 

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile. 

Caches:  In Action 

•  Next time you access memory, if you already pulled 
the address into one of the cache levels in a previous 
access, the value is provided from the cache. 



Multicore Landscape 

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile. 

Caches:  In Action 

•  Next time you access memory, if you already pulled 
the address into one of the cache levels in a previous 
access, the value is provided from the cache. 



Multicore Landscape 

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile. 

Caches:  In Action 

•  Next time you access memory, if you already pulled 
the address into one of the cache levels in a previous 
access, the value is provided from the cache. 



Multicore Landscape 

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile. 

Why Do Caches Work?  Locality 

•  Spatial and Temporal 
–  Locations near each other in space (address) are highly likely 

to be accessed near each other in time.   

•  Cost? 
–  A high cost for one access but amortize this out with faster 

accesses afterwards.  

•  Burden? 
–  The machine makes sure that memory is kept consistent.  If a 

part of cache must be reused, the cache system writes the 
data back to main memory before overwriting it with new data. 

–  Hardware cache design deals with managing mappings 
between the different levels and deciding when to write back 
down the hierarchy. 
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Caches:  Memory Consistency? 

•  What happens when you modify something in 
memory? 
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Caches:  Memory Consistency? 

•  What happens when you modify something in 
memory? 

•  Writes to memory become cheap.  Only go to slow 
memories when needed.  Called write-back memory. 
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Caches:  Memory Consistency? 

•  Eventually written values must make it back to the 
main store.  

•  When? 
–  Typically, when a cache block is replaced due to a cache 

miss, where new data must take the place of old.  

•  The programmer does NOT see this.   
–  Hardware takes care of all this … but things can go wrong 

very quickly when you modify this model.   
•  Forecast for emergent chip multiprocessors:  Cell, GPGPU, 

Terascale, and so on. 
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Common Memory Models 

•  Shared Memory Architecture 
•  Distributed Memory Architecture 
•  Which is Intel?  Which is AMD?  Others? 
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Memory Models:  Shared Memory 

•  Before 
–  Only one processor has access to modify memory. 

•  How do we avoid problems when multiple cache 
hierarchies see the same memory?  
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Caching Issues 

•  Assume two processors load 
 locations that are neighbors,  

  so data is replicated in the local processor caches.  
•  Now, let one processor modify a value.   
•  The memory view is now inconsistent.  One 

processor sees one version of memory, the other 
sees a different version.  

•  How do we resolve this in hardware such that the 
advantages of caches are still seen by application 
developers in terms of performance while ensuring a 
consistent (or, coherent) view of memory? 
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Caching:  Memory Consistency? 

•  Easy to see “memory consistency” problem if we 
restrict each cache hierarchy to being isolated from 
the others, only sharing main memory. 

•  Key insight 
–  Make this inconsistency “go away” by making the caches 

aware of each other. 
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What is Memory Coherence? 

•  Definition (Courtesy: “Parallel Computer Architecture” by Culler and Singh) 

1.  Operations issued by any particular process occur in the 
order in which they were issued to the memory system by 
that process.  

2.  The value returned by each read operation is the value 
written by the last write to that location in the serial order.  

•  Assumption:  The above requires a hypothetical ordering for 
all read/write operations by all processes into a total order that is 
consistent with the results of the overall execution.  

•  Sequential Consistency (SC) 
–  The memory coherence hardware assists in enforcing SC.   



Multicore Landscape 

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile. 

Implicit Properties of Coherence 

•  The key to solving the cache coherence problem is 
the hardware implementation of a cache coherence 
protocol.  

•  A cache coherence protocol takes advantage of two 
hardware features 
1.  State annotations for each cache block (often just a couple 

bits per block).  
2.  Exclusive access to the bus by any accessing process. 
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Bus Properties 

•  All processors on the bus see the same activity. 
•  So, every cache controller sees bus activity in the 

same order.  
•  Serialization at the bus level results from the phases 

that compose a bus transaction:  
–  Bus arbitration: The bus arbiter grants exclusive access to 

issue commands onto the bus.   
–  Command/address: The operation to perform (“Read”, “Write”), 

and the address.   
–  Data: The data is then transferred. 
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Granularity 

•  Cache coherence applies at the block level.  
•  Recall that when you access a location in memory, 

that location and its neighbors are pulled into the 
cache(s).  These are blocks. 

 Note: To simplify the discussion, we will only consider a
 single level of cache.  The same ideas translate to
 deeper cache hierarchies. 
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Cache Coherency via the Bus 

•  Key Idea:  Bus Snooping 
–  All CPUs on the bus can see activity on the bus regardless 

of if they initiated it.  
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Invalidation vs. Update 

•  A cache controller snoops and sees a write to a 
location that it has a now-outdated copy of.   
–  What does it do?  

•  Invalidation 
–  Mark cache block as invalid, so when CPU accesses it again, 

a miss will result and the updated data from main memory will 
be loaded.  Requires one bit per block to implement.  

•  Update 
–  See the write and update the caches with the value observed 

being written to main memory. 
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Write-Back vs. Write-Through Caches 

•  Write-Back 
–  On a write miss, the CPU reads the entire block from 

memory where the write address is, updates the value in 
cache, and marks the block as modified (aka dirty).  

•  Write-Through 
–  When the processor writes, even to a block in cache, a bus 

write is generated.  

•  Write-back is more efficient with respect to bandwidth 
usage on the bus, and hence, ubiquitously adopted. 



Multicore Landscape 

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile. 

Cache Coherence and Performance 

•  Unlike details with pipelining that only concern 
compiler writers, you the programmer really need to 
acknowledge that this is going on under the covers. 

•  The coherence protocol can impact your 
performance. 
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Cache Coherence:  Performance Demo 


