
Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Multicore Architectures
Week 1, Lecture 2

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Multicore Landscape

•  Intel
–  Dual and quad-core Pentium family.
–  80-core demonstration last year.

•  AMD
–  Dual, triple (?!), and quad-core Opteron family.

•  IBM
–  Dual and quad-core Power family
–  Cell Broadband Engine

•  Sun
–  (Multithreaded) Niagara: 8 cores (64 threads).

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Multicore Classes

•  Homogenous Multicore
–  Replication of the same processor type on the die as a

shared memory multiprocessor.
–  Examples: AMD and Intel dual- and quad-core processors

•  Heterogeneous/Hybrid Multicore
–  Different processor types on a die
–  Example: IBM Cell Broadband Engine

•  One standard core (PowerPC) + 8 specialiced cores (SPEs)
–  Rumors: Intel and AMD to follow suit.

•  Combining GPU-like processors with standard multicore cores

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Homogeneous Multicore

•  The major mainstream chips are all of this form
–  Examples: Intel, IBM, Sun, AMD, and so on.

•  Take a single “core”, stamp it out lots of times on a die.

•  This will work for now, but it likely will not scale to high
core counts. Why?

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

AMD Dual-, Triple-, and Quad-Core

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

AMD Triple-Core?

•  Actually quad-core processors with one core disabled.

•  Manufacturing defects that kill one core but leave the
rest functional would be thrown out as failed quad core.
–  Why not resell them as triple core?

•  Not a new idea …
–  Lower clock-rate versions of processors are identical to their

higher clock-rate siblings but were part of a batch that failed to
meet certain manufacturing tolerances but were otherwise fine.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

AMD Rev. H Quad-Core

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

IBM: Power6

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Sun Niagara

 8 cores, 8 threads
per core = 64
threads

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Intel Nehalem

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Dies

•  Observations
–  Core replication obvious.
–  Big chunks of real estate dedicated to caches.
–  Increasing real estate dedicated to memory and bus logic.

Why?
–  In the past, SMPs were usually 2 or 4 CPUs, so this logic

was on other chips on the motherboard. Even with big fat
SMPs, the logic was off on a different board (often this was
what the $$$ went for in the expensive SMPs.)

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Wait a Minute! There’s More!
•  Itanium processors are

based on the concept of
VLIW (Very Long
Instruction Word).
–  Each instruction is a 128-

bit word composed of four
32-bit instructions to be
executed concurrently.

–  Difficulty of identifying
parallelism is left to the
compiler instead of
hardware or programmer.

–  VLIW dead with “Itanic”?

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

VLIW Lives!

•  VLIW not dead.
•  Intel Terascale demo

processor
–  80 VLIW cores instead

of 80 superscalar cores
similar to those found in
the Core2 architecture
more commonly found
today.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Multicore: Present

•  Core count is increasing.
•  Operating systems schedule processes out to the

various cores in the same way they always have on
traditional multiprocessor systems.

•  Applications get increased performance for free by
reducing the # processes per core yielding a
decrease in contention for processor resources.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Resource Contention

•  Assume each process or thread has its own CPU.
–  Example: The little clock in the corner of the screen has its

own CPU.

•  Result: Massive contention for resources when
simultaneous threads all “fight” for off-chip resources.

•  Process preemption when doing something slow,
e.g., going to memory. Other useful work can occur.

•  If a processor exists for each process, everyone
could proceed at the same time yet will still be
fighting for a bus that is not growing at the same rate
as the core count. Same with caches.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Blast Back to the Past … 70s and 80s

•  Network topology will matter
again!
–  Mesh-based algorithms, hypercubes,

tori, etc.
–  80-core Intel Terascale demo

processor had a huge component
related to interconnection topology.

–  Systolic algorithms are making a
comeback!

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Reminder: Reading Assignment

•  Brian Hayes, “Computing in a Parallel Universe,”
American Scientist, November-December 2007.
http://www.americanscientist.org/issues/pub/
computing-in-a-parallel-universe

•  Herb Sutter, “The Free Lunch Is Over: A
Fundamental Turn Toward Concurrency in Software,”
Dr. Dobb's Journal, 30(3), March 2005.
http://gotw.ca/publications/concurrency-ddj.htm

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Why Memory Matters

Yes for “traditional multicore” …
No for “emerging multicore” …

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Memory Architecture in Multicore

•  As you saw in one of the readings …
–  The cache is still a key performance feature.

•  … but interesting ideas exist that will turn the usual memory
architecture upside down.

•  … hence, we look at traditional memory architecture so we can
compare and contrast it with emerging memory architecture of
the Cell, GPGPU, and so on.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Caches: The Multicore Feature of Interest

•  Introduced in the 1960s as a way to overcome the
“memory wall”.
–  Memory speeds did not advance as fast as the speed of

functional units.
–  Consequence: Processor outruns memory, leading to

decreased utilization.
•  Utilization = (ttotal – tidle) / ttotal

•  What happens when you go out to main memory?
Idle time.
–  Decreased utilization = less work per unit time.
–  This costs money because time=$$ … so time doing nothing

is $$$ wasted.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Idle Time

•  Caches were not the sole fix for idle time.
–  Preemptive multitasking and time sharing were actually the

dominant methods in the early days.
–  But every program inevitably has to go out to memory, and

you do not always have enough jobs to swap in while others
wait for memory.

–  Plus, do you really want to be preempted every time you ask
for data? Of course not!

•  So, caches important (for now :-) …

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Caches: Quick Overview

•  Traditional Single-Level Memory

•  Multiple Memory Levels

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Caches: In Action

•  Access a location in memory
•  Copy the location and its neighbors into the faster

memories closer to the CPU.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Caches: In Action

•  Access a location in memory
•  Copy the location and its neighbors into the faster

memories closer to the CPU.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Caches: In Action

•  Access a location in memory
•  Copy the location and its neighbors into the faster

memories closer to the CPU.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Caches: In Action

•  Access a location in memory
•  Copy the location and its neighbors into the faster

memories closer to the CPU.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Caches: In Action

•  Access a location in memory
•  Copy the location and its neighbors into the faster

memories closer to the CPU.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Caches: In Action

•  Access a location in memory
•  Copy the location and its neighbors into the faster

memories closer to the CPU.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Caches: In Action

•  Next time you access memory, if you already pulled
the address into one of the cache levels in a previous
access, the value is provided from the cache.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Caches: In Action

•  Next time you access memory, if you already pulled
the address into one of the cache levels in a previous
access, the value is provided from the cache.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Caches: In Action

•  Next time you access memory, if you already pulled
the address into one of the cache levels in a previous
access, the value is provided from the cache.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Caches: In Action

•  Next time you access memory, if you already pulled
the address into one of the cache levels in a previous
access, the value is provided from the cache.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Caches: In Action

•  Next time you access memory, if you already pulled
the address into one of the cache levels in a previous
access, the value is provided from the cache.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Why Do Caches Work? Locality

•  Spatial and Temporal
–  Locations near each other in space (address) are highly likely

to be accessed near each other in time.

•  Cost?
–  A high cost for one access but amortize this out with faster

accesses afterwards.

•  Burden?
–  The machine makes sure that memory is kept consistent. If a

part of cache must be reused, the cache system writes the
data back to main memory before overwriting it with new data.

–  Hardware cache design deals with managing mappings
between the different levels and deciding when to write back
down the hierarchy.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Caches: Memory Consistency?

•  What happens when you modify something in
memory?

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Caches: Memory Consistency?

•  What happens when you modify something in
memory?

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Caches: Memory Consistency?

•  What happens when you modify something in
memory?

•  Writes to memory become cheap. Only go to slow
memories when needed. Called write-back memory.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Caches: Memory Consistency?

•  Eventually written values must make it back to the
main store.

•  When?
–  Typically, when a cache block is replaced due to a cache

miss, where new data must take the place of old.

•  The programmer does NOT see this.
–  Hardware takes care of all this … but things can go wrong

very quickly when you modify this model.
•  Forecast for emergent chip multiprocessors: Cell, GPGPU,

Terascale, and so on.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Common Memory Models

•  Shared Memory Architecture
•  Distributed Memory Architecture
•  Which is Intel? Which is AMD? Others?

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Memory Models: Shared Memory

•  Before
–  Only one processor has access to modify memory.

•  How do we avoid problems when multiple cache
hierarchies see the same memory?

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Caching Issues

•  Assume two processors load
 locations that are neighbors,

 so data is replicated in the local processor caches.
•  Now, let one processor modify a value.
•  The memory view is now inconsistent. One

processor sees one version of memory, the other
sees a different version.

•  How do we resolve this in hardware such that the
advantages of caches are still seen by application
developers in terms of performance while ensuring a
consistent (or, coherent) view of memory?

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Caching Issues

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Caching Issues

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Caching Issues

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Caching Issues

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Caching: Memory Consistency?

•  Easy to see “memory consistency” problem if we
restrict each cache hierarchy to being isolated from
the others, only sharing main memory.

•  Key insight
–  Make this inconsistency “go away” by making the caches

aware of each other.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

What is Memory Coherence?

•  Definition (Courtesy: “Parallel Computer Architecture” by Culler and Singh)

1.  Operations issued by any particular process occur in the
order in which they were issued to the memory system by
that process.

2.  The value returned by each read operation is the value
written by the last write to that location in the serial order.

•  Assumption: The above requires a hypothetical ordering for
all read/write operations by all processes into a total order that is
consistent with the results of the overall execution.

•  Sequential Consistency (SC)
–  The memory coherence hardware assists in enforcing SC.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Implicit Properties of Coherence

•  The key to solving the cache coherence problem is
the hardware implementation of a cache coherence
protocol.

•  A cache coherence protocol takes advantage of two
hardware features
1.  State annotations for each cache block (often just a couple

bits per block).
2.  Exclusive access to the bus by any accessing process.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Bus Properties

•  All processors on the bus see the same activity.
•  So, every cache controller sees bus activity in the

same order.
•  Serialization at the bus level results from the phases

that compose a bus transaction:
–  Bus arbitration: The bus arbiter grants exclusive access to

issue commands onto the bus.
–  Command/address: The operation to perform (“Read”, “Write”),

and the address.
–  Data: The data is then transferred.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Granularity

•  Cache coherence applies at the block level.
•  Recall that when you access a location in memory,

that location and its neighbors are pulled into the
cache(s). These are blocks.

 Note: To simplify the discussion, we will only consider a
 single level of cache. The same ideas translate to
 deeper cache hierarchies.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Cache Coherency via the Bus

•  Key Idea: Bus Snooping
–  All CPUs on the bus can see activity on the bus regardless

of if they initiated it.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Cache Coherency via the Bus

•  Key Idea: Bus Snooping
–  All CPUs on the bus can see activity on the bus regardless

of if they initiated it.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Cache Coherency via the Bus

•  Key Idea: Bus Snooping
–  All CPUs on the bus can see activity on the bus regardless

of if they initiated it.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Cache Coherency via the Bus

•  Key Idea: Bus Snooping
–  All CPUs on the bus can see activity on the bus regardless

of if they initiated it.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Invalidation vs. Update

•  A cache controller snoops and sees a write to a
location that it has a now-outdated copy of.
–  What does it do?

•  Invalidation
–  Mark cache block as invalid, so when CPU accesses it again,

a miss will result and the updated data from main memory will
be loaded. Requires one bit per block to implement.

•  Update
–  See the write and update the caches with the value observed

being written to main memory.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Write-Back vs. Write-Through Caches

•  Write-Back
–  On a write miss, the CPU reads the entire block from

memory where the write address is, updates the value in
cache, and marks the block as modified (aka dirty).

•  Write-Through
–  When the processor writes, even to a block in cache, a bus

write is generated.

•  Write-back is more efficient with respect to bandwidth
usage on the bus, and hence, ubiquitously adopted.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Cache Coherence and Performance

•  Unlike details with pipelining that only concern
compiler writers, you the programmer really need to
acknowledge that this is going on under the covers.

•  The coherence protocol can impact your
performance.

Multicore Landscape

Copyright © 2009 by W. Feng. Based on material from Matthew Sottile.

Cache Coherence: Performance Demo

